Greville's method for preconditioning least squares problems

نویسندگان

  • Xiaoke Cui
  • Ken Hayami
  • Jun-Feng Yin
چکیده

X. Cui Department of Informatics, School of Multidisciplinary Sciences, The Graduate University for Advanced Studies (Sokendai), 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan, 101-8430 K. Hayami Principles of Informatics Research Division, National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyodaku, Tokyo, Japan, 101-8430 J. Yin Department of Mathematics, Tongji University, Shanghai, P.R. China

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Generalized Inverse Preconditioning Methods for Least Squares Problems

iv erative methods to solve least squares problems more efficiently. We especially focused on one kind of preconditioners, in which preconditioners are the approximate generalized inverses of the coefficient matrices of the least squares problems. We proposed two different approaches for how to construct the approximate generalized inverses of the coefficient matrices: one is based on the Minim...

متن کامل

Preconditioned Iterative Methods for Solving Linear Least Squares Problems

New preconditioning strategies for solving m × n overdetermined large and sparse linear least squares problems using the CGLS method are described. First, direct preconditioning of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU fa...

متن کامل

Projected Landweber method and preconditioning

The projected Landweber method is an iterative method for solving constrained least-squares problems when the constraints are expressed in terms of a convex and closed set C. The convergence properties of the method have been recently investigated. Moreover, it has important applications to many problems of signal processing and image restoration. The practical difficulty is that the convergenc...

متن کامل

Lattice preconditioning for the real relaxation branch-and-bound approach for integer least squares problems

The integer least squares problem is an important problem that arises in numerous applications. We propose a real relaxation-based branch-and-bound (RRBB) method for this problem. First, we define a quantity called the distance to integrality, propose it as a measure of the number of nodes in the RRBB enumeration tree, and provide computational evidence that the size of the RRBB tree is proport...

متن کامل

A Multilevel Block Incomplete Cholesky Preconditioner for Solving Rectangular Sparse Matrices from Linear Least Squares Problems

An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are formed as a means to solve rectangular matrices from linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2011